

Salt operated reactors

Acrylic Acid

DWE[®] – global no. 1 in tubular reactors

- First reactor in 1955
- More than 750 contracts
- up to 45,000 tubes
- heat removal up to 40 MW
- Salt flow up to 11,000 m3/h
- More than 750 catalytic gas phase tubular reactors for 54 products and use of 77 different processes
- 28 Deflagration pressure containment design reactors
- Up-scale from pilot test (1-2 tube) to commercial reactor size with same salt temperature conditions

Market leader for AA reactors

- 140+ reactor systems manufactured until today
- AA via Propylene
- Tandem design and single design with two stages feasible
- Loading
- Propylene 8 10 Mol %, space velocity max. 150 1/h
- Type of construction of reactor stage 1
- With integrated quench (reaction and quench in one tube)
- With separate quench (quench flanged to reactor) "Unique DWE[®]-Design"
- Biggest tube number: up to 50,000

Acrylic Acid (AA) reactor

Technical data

Standard design / operating data for stage 1 and stage 2

Design data	Design	Operating
Pressure tube side	1.5 barg – 4.0 barg	0.5 barg - 2.1 barg
Temperature tube side	390 °C – 420 °C	250 °C – 360 °C
Pressure tube side	1.5 barg – 4.0 barg	0.5 barg - 2.1 barg
Pressure shell side	static + pump	static + pump
Temperatur shell side	350 °C – 400 °C	270 °C – 380 °C

Characteristic design data (stage 1 and stage 2)

Design data	Stage 1 (Feed: Propylene)	Stage 2 (Feed: Acrolein)
Space velocity	max. 150 1/h	ID21 mm – ID27 mm
Inner tube diameter	ID21 mm – ID27 mm	ID21 mm – ID27 mm
Tube length over tube sheets	approx. 3,500 mm (without separate quench), approx. 4,900 mm (withour integrated quench	approx. 3,300 mm - 3,600 mm
Tube length between tube sheets	approx. 3,200 mm (without separate quench), approx. 4,600 mm (withour integrated quench	approx. 3,100 mm - 3,300 mm
Amount of heat to salt per tube	max. 1,100 W	max. 700 W
Yield	85 %	
ACS per tube and hour	0.58 kg	
Max. tube number per reactor	50,000	50,000

MAN Energy Solutions

DWE[®]-Reactors Werftstr. 17 94469 Deggendorf, Germany P +49 991 381-164 F +49 991 381-5164 dwe-reactors@man-es.com www.man-es.com

> All data provided in this document is non-binding. This data serves informational purposes only and is not guaranteed in any way. Depending on the subsequent specific indivdual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operationa conditions.

Copyright © MAN Energy Solutions. D02085036EN Printed in Germany 11190.5