The emission-free MAN Heat Pump solution HPU makes efficient use of the special properties that CO₂, as a working fluid, has to offer. Operating with an optimized transcritical heat pump cycle, this high temperature industrial heat pump system is able to generate temperatures from 0°C (32°F) up to 150°C (302°F) and up to 50 MW (170.61 MMBtu/h) of thermal heat and 30 MW (8530 tons of refrigeration) of thermal cold with using just one single heat pump unit.

Benefits at a glance
- Large scale supply of heating or cooling
- High supply temperatures
- Environmentally friendly refrigerant
- High power density
- Adaptable to project or site specific requirements
- An all inclusive electric solution for low maintenance and remote operations
- Participation in secondary control power market
- Quick start-up, shut down and load change reaction time

Components

1. Heat Sink HEX
 PCHE Type
2. Recuperator
 S&T, Plate or PCHE Type
3. HOFIM® Compressor and Expander
4. CO₂ Separator
5. Evaporator
 S&T, Plate or PCHE Type
Nominal Conditions

MAN Heat Pump

<table>
<thead>
<tr>
<th></th>
<th>HPU28</th>
<th>HPU33</th>
<th>HPU43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal reference conditions:</td>
<td>Heat sink supply / return temp.: 110°C / 40°C (230°F / 104°F)</td>
<td>Heat source temp.: 10°C (50°F)</td>
<td></td>
</tr>
<tr>
<td>Unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. compressors</td>
<td>Pca,</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Variable speed drive (VSD)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max. thermal burnout</td>
<td>%</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Refrigerant charge (CO₂)</td>
<td>kg</td>
<td>9'000 (19,941)</td>
<td>13'750 (30,313)</td>
</tr>
<tr>
<td>Electrical supply voltage(^1)</td>
<td>kV</td>
<td>min. 4.16</td>
<td>min. 6</td>
</tr>
<tr>
<td>Heating capacity</td>
<td>kW, (kWth)</td>
<td>9'370 (20,452)</td>
<td>16'730 (37,200)</td>
</tr>
<tr>
<td>Cooling capacity</td>
<td>kWth, (kWth)</td>
<td>8'270 (17,461)</td>
<td>16'730 (37,200)</td>
</tr>
<tr>
<td>Motor inlet power(^2)</td>
<td>kW</td>
<td>3'450</td>
<td>8'500</td>
</tr>
<tr>
<td>COP (Hot)</td>
<td>-</td>
<td>2.84</td>
<td>2.97</td>
</tr>
<tr>
<td>COP (Cold)</td>
<td>-</td>
<td>1.94</td>
<td>1.94</td>
</tr>
<tr>
<td>COP (total excl. pumps)</td>
<td>-</td>
<td>4.68</td>
<td>4.94</td>
</tr>
<tr>
<td>Dimensions (L/W/H)</td>
<td>m (ft)</td>
<td>12/8/8 (40/26/28)</td>
<td>16/8/8 (51/26/28)</td>
</tr>
<tr>
<td>Floor load</td>
<td>kN/m(^2) (psf)</td>
<td>10 (209)</td>
<td>-</td>
</tr>
<tr>
<td>Connections at heat sink</td>
<td>-</td>
<td>DN600 (20")</td>
<td>DN800 (27")</td>
</tr>
<tr>
<td>Connections at heat source</td>
<td>-</td>
<td>DN500 (2")</td>
<td>DN600 (2")</td>
</tr>
<tr>
<td>Design pressure</td>
<td>Bar (psig)</td>
<td>180 (2625)</td>
<td>-</td>
</tr>
<tr>
<td>Design temperature</td>
<td>°C (°F)</td>
<td>200 (392)</td>
<td>-</td>
</tr>
<tr>
<td>Controller type</td>
<td>-</td>
<td>PLC (Programmable logic controller)</td>
<td>-</td>
</tr>
<tr>
<td>Communication protocol</td>
<td>-</td>
<td>MODBUS/PROFINET/Ethernet</td>
<td>-</td>
</tr>
</tbody>
</table>

\(^1\) Higher voltages are possible \(^2\) Higher motor power is possible (case specific)

Key components

Heat Sink HEX
- Printed circuit heat exchanger (PCHE) design
- Compact and robust design
- Suitable for efficient gas to liquid heat transfer with narrow approach temperatures

Evaporator
- Different types available based on heat source media (Shell & Tube, PCHE, Plate Fin or Falling Film)

Recuperator
- Heat exchanger used to optimize the system and reduce system losses
- Different types available based on heat source media (Shell & Tube, PCHE, Plate Fin)

Separator tank
- A separator tank is used to control the amount of CO₂ in the system

HOFIM®
- Integrated machinery concept comprising of a centrifugal compressor, a high speed electric motor and an expander
- Hermetically sealed design preventing gas leakages to the environment
- Modular concept for maximum process design flexibility
- The active magnetic bearing system ensures a broad operating range, the highest reliability and availability as well as a quick start-up and shutdown; without lubrication oil system and complex auxiliaries
- Designed for full remote operation, thanks to the comprehensive electric design
- Optimized installation and commissioning as well as lower maintenance since there is no external cooling medium, no lube oil and sealing gas is no longer required
- The compressor module is fully assembled and tested at the factory in order to ensure a smooth installation and commissioning on site

Expansion
- Expander stage for recuperation of the usable kinetic energy in the refrigerant
- Expansion valve for the two-phase expansion

Control system
- Process control system for control and operation of the complete heat pump unit
- Advanced digital services for remote operation, real time monitoring and predictive maintenance available

Other available options
- CO₂ to air evaporators
- CO₂ detection system for machinery room and in the water systems
- Heat exchanger online cleaning systems (on water side)
- Additional CO₂ storage vessel for maintenance purposes
- A wide range of after sales support and services is offered

Advantages of using CO₂ as a refrigerant
- CO₂ is a naturally occurring component which is available in large quantities and is inexpensive compared to synthetic refrigerants
- CO₂ is an environmentally friendly, low GWP, non-toxic and non-explosive medium
- CO₂ is a very dense refrigerant with a high volumetric heating capacity; this allows the piping sizes and equipment volume to be much smaller than an equivalent HFC system
- Transcritical CO₂ HP systems provide a high discharge temperature, therefore removing the need for cascade heat pump systems or additional heating devices

COP operating range as function of heat sink supply and return temperature and a constant source temperature

COP operating range as function of heat sink supply and return temperature (Heat sink temp. 110°C / 40°C (230°F / 104°F))

Net heat output as function of source inlet temperature

Return temperature (T ret) [°C] (°F)

High COP

Low COP

Net heat output [kWth] (kWth[k])
Selected applications

Scalable and modular, MAN Heat Pump HPU is suitable for mid- to large-scale thermal consumers.

District Heating, municipal, urban and large facilities

With the MAN HPU, you can decarbonize the complete energy supply for district heating networks, urban quarters, small towns and large facilities like airports, universities or shopping malls.

Data centers

Your data center operators can reduce their CO₂ emissions and electricity costs with a direct supply of cooling energy. An additional revenue stream can be created by participating in the power markets and exporting thermal energy, e.g. for district heating.

Process industries

MAN HPU provides cost-efficient carbon-neutral heating or cooling for all kinds of industrial processes with intensive heating or cooling demands, especially in the food, beverage and pharmaceutical industries.