MAN exhaust gas after-treatment systems ensure vessels with conventional propulsion can meet the International Maritime Organization’s (IMO) strict regulations, even in emission control areas (ECA). Our system solutions are highly effective technologies to minimize harmful NOx and SOx emissions.

Our systems optimize ship performance not only in terms of emissions, but also economy and operation. Ship operators benefit from smart processes, efficient operation and predictive maintenance services. Using MAN SCR in combination with MAN ECOMAP can reduce the operating costs of the entire system.

Benefits at a glance
- Reduce NOx emissions up to 90%
- IMO Tier III compliance
- Increased fuel efficiency
- One source, one point of contact
Reducing emissions at sea

A world of tough regulations
As ships carry passengers and cargo throughout the world, they produce exhaust emissions that have a damaging impact on fragile ecosystems. Finding ways to reduce emissions and make ships greener is an important factor for the future of the marine sector.

IMO Tier III, ECA and energy efficiency design index (EEDI) regulations define the limits for all vessels sailing in international waters. To ensure the future viability of their fleets, ship owners and operators need to comply with these regulations without sacrificing ship engine performance and propulsion efficiency.

Effective solutions for lower emissions
We offer proven exhaust after-treatment and holistic propulsion systems that meet the International Maritime Organization’s strict regulations for NOx emissions and fuel sulfur content, even in ECAs.

Primary measures for emission reduction are fully integrated into the engine design and reduce NOx formation during the combustion process. They include optimized combustion-chamber geometry, optimized fuel injection, including common rail technology, the Miller cycle, plus MAN-developed variable valve timing system, and high efficiency turbochargers.

Effective secondary measures include catalytic reduction, wet scrubbing and exhaust gas recirculation. MAN produces and supplies all of these in customizable packages for newbuilds and retrofits. We take care of certification and can already attest to 12,000 running hours without loss of emission compliance.

General competence
MAN Energy Solutions unites comprehensive technologies and competencies under one roof: injection systems, turbochargers, control and after-treatment systems. This enables us to design and implement highly efficient emission-reduction packages.

For example, the MAN SCR (selective catalytic reduction) control system is integrated in the overall engine control system and adapted to the fuel injection system and turbocharger, enhancing the efficiency and reliability of the whole system. Up to 2.5 g/kWh of fuel oil consumption can be saved thanks to MAN SCR integration and optimized control strategies compared to the use of an SCR system provided by a third-party supplier.

MAN wet scrubbers
As the shipping industry today relies to a large extent on high-sulfur fuels, we have developed various desulfurization technologies to meet current and future emission standards by cutting up sulfur oxides in the exhaust gas by up to 95%. The main technology currently used in marine applications is the wet scrubber, based on the use of seawater or freshwater with an alkaline reagent like caustic soda. Efficient wet scrubbing enables a ship to run on HFO while continuing to comply with the IMO sulfur limits.

System solutions
MAN SCR
Selective catalytic reduction is the most tested and approved system for achieving NOx reduction rates of up to 90%. By inducing chemical reactions in the engine’s exhaust gases, harmful substances are transformed into ecologically benign constituents. The MAN Energy Solutions SCR system standard is available in fourteen different sizes. In this way, it fully covers the entire portfolio of MAN four-stroke medium speed engines. Furthermore, customized SCR systems can be offered on demand.

MAN wet scrubbers
As the shipping industry today relies to a large extent on high-sulfur fuels, we have developed various desulfurization technologies to meet current and future emission standards by cutting up sulfur oxides in the exhaust gas by up to 95%. The main technology currently used in marine applications is the wet scrubber, based on the use of seawater or freshwater with an alkaline reagent like caustic soda. Efficient wet scrubbing enables a ship to run on HFO while continuing to comply with the IMO sulfur limits.

Key components
- Main engines
 Fuel-efficient, powerful and reliable four-stroke high and medium speed propulsion engines.
- Auxiliary GenSets
 Reliably deliver power at a low cost per kWh while respecting the environment.
- Propellers, gearboxes, and propulsion control systems
 Efficient propulsion solutions delivered under the MAN Alpha brand.
- SCR reactor
 In the SCR reactor, the NOx is reduced catalytically to nitrogen and water by adding ammonia as a reducing agent.
- Compressed air reservoir module
 Supplies compressed air to the injection process and to the soot blower system.
- Urea dosing unit
 Defines and adjusts the amount of urea injected into the system.
- Pump module
 Pumps urea to the vaporizer/mixer by a urea pump in the supply unit.
- Mixing unit
 It is essential that both the injection and the mixing of the reducing agent are performed effectively.
- Urea tank
 The urea tank contains the reducing agent and has to be adapted to the vessel’s requirements.
- Control unit
 Controls the injection of urea and compressed air into the vaporizer.
All data provided in this document is non-binding. This data serves informational purposes only and is not guaranteed in any way. Depending on the subsequent specific individual projects, the relevant data may be subject to changes and will be assessed and determined individually for each project. This will depend on the particular characteristics of each individual project, especially specific site and operational conditions.

Copyright © MAN Energy Solutions. D2366604 Printed in Germany GGKM-AUG-18082